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Abstract— We recently showed for peer-to-peer networks, that 
having the number of replicas of each object proportional to the 
request rate for these objects has many per-node advantages. In 
this paper we complement those results to show that this 
distribution has network-wide advantages as well. Given these 
benefits of proportional replication, the next issue is achieving 
proportional replication in a decentralized manner. We show that 
local storage management algorithms like LRU automatically 
achieve near-proportional replication and that the system 
performance with the replica distribution achieved by LRU is 
very close to optimal. We also show that the LRU responds to a 
change in user access pattern quickly (the number of accesses 
taken to reach the new steady-state replica distribution with LRU 
is close to the minimum possible with any cache replacement 
algorithm). Analytical models are provided for computing the 
steady-state network-wide replica distribution and the transient 
period for LRU. 

Keywords- Peer-to-Peer, File Replication, Cache Management, 
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I.  INTRODUCTION 
Peer-to-peer networks offer the promise of systems that 

automatically scale in capacity as the number of users increases 
and yet are extremely robust, automatically adapting to failures 
of nodes/links as well as to changes in usage patterns, all at 
virtually no cost. These loosely organized networks of 
autonomous entities (user nodes or “peers”), which make their 
resources available to other peers, represent a new computing 
paradigm where the service consumers are, now, the service 
providers as well. So, for example in peer-to-peer file sharing 
networks, users share files and if one wants to download a file 
and another user is sharing that file, one would download it 
directly from that user. Upon obtaining the desired file, one 
may also begin to share that file allowing other users to 
download from them. Thus, a file is likely to have multiple 
replicas in the network with the more popular files having more 
replicas (i.e. more sources to download the file from). The 
replication of files provides the robustness while its correlation 
with popularity provides the automatic scaling according usage 
patterns. Since music file sharing over the Internet is the most 
popular peer-to-peer networking application, characteristics 
associated with music file sharing (e.g. free-riding, short node 
lifetimes, large variation in user connection bandwidth and user 
shared storage, no limits on user storage allocated for 
downloaded content) are usually associated with all peer-to-
peer networking. However, many other applications can benefit 
from peer-to-peer networking. For example, peer-to-peer 

networking can be used to offload load from the service 
provider video server in a video-on-demand service. One may 
also conceive of use of peer-to-peer networking in a shared 
digital library application (for example, a state-funded library 
for all K-12 schools in a state) whereby individual schools (or 
school districts) dedicate fixed amounts of storage for the 
application; the content is brought in upon a user request and is 
kept in the storage and is available to other users at other sites. 
For applications such as these, the presence of an intermediary 
and/or similarity in the user group simplifies the assumptions 
for the peer-to-peer system and it is not unreasonable to assume 
that users are similar and well-behaved (i.e. no free-riding, little 
variation in interests and resources of each user, long node 
lifetimes). If the number of users is not very large and the user 
caches are available for long time durations, a centralized 
solution for the search problem may be feasible. Hence, in this 
paper, we ignore the issue of search costs in our peer-to-peer 
system, concentrating exclusively on the downloading aspects 
of the peer-to-peer system. [18] showed that when the number 
of replicas of each object is proportional to the request rate for 
that object, a user has no advantage in sharing one file over the 
other (as the download load for each file is equal), the total 
download load on each node is same and when queueing delays 
are convex in node utilization, the average queueing delay seen 
by a downloader is minimized. In this paper, we focus on 
system performance aspects and show that in addition to these 
user-centric advantages, the proportional replication 
distribution also minimizes the network bandwidth used 
(measured as the average number of links traversed in a 
download). The system model is discussed in Section 2 and the 
proof of the optimality of the proportional replication for the 
network bandwidth used is presented in Section 3. 

Given these benefits of proportional replication, we devote 
much of this paper seeking distributed mechanisms to achieve 
such a replication. In Section 4, we discuss the performance of 
some existing cache management algorithms such as LRU, 
LFU, and FIFO. Our simulations show that these algorithms 
achieve near-proportional replica distribution. We construct a 
cache management algorithm that achieves the proportional 
replication and compare system performance with this 
algorithm to the system performance when cache management 
policy is LRU. Our simulations show that the performance with 
LRU is only slightly inferior to the optimal performance. 
Therefore, we study the behavior of LRU in peer-to-peer 
environments in more detail in Section 5 where an analytical 
model is provided to compute the replica distribution LRU will 
achieve in different situations which can then be used to 
estimate the system performance. 



As user interests change over time, the replica distribution 
should adapt to the new request rates. Therefore, the utility of 
a replica distribution algorithm also depends on its ability to 
converge to the new steady-state distribution quickly and/or 
maintain adequate performance during the transient period. 
We address this issue in Section 6 where our simulations show 
that, upon a change in the access pattern, LRU converges to 
the new steady-state replica distribution faster than the cache 
management algorithm that achieves linearly proportional 
replication. We also provide a preliminary analytical model 
for estimating the duration of the warm-up transient period 
(i.e. the time taken to reach the steady-state replica distribution 
starting with an empty buffer) and the replica distribution 
during this transient period for LRU. This model can be used 
to estimate the transient performance with LRU cache 
management by making similar extensions as in [3].  

 Some related work is briefly discussed in Section 7 
and Section 8 concludes the paper. 

II. SYSTEM MODEL 
Our abstract peer-to-peer system model is shown in Fig. 1. 

The broadband network can have any topology. Our only 
assumption is that the network topology has exponential 
expansion [15]. As discussed in [15], many commonly used 
Internet topology models fit this description. The central server 
is optional and shown only to signify that a file never 
disappears from the system as a result of cache replacement. 
Our simulations do not include the central server and at least 
one replica of each file in the system is maintained by 
assigning a peer (“origin server”) for each file which must 
always keep the file in its cache. 

We assume that there are M peers in the system (the terms 
peers, users and nodes are used interchangeably in this paper). 
There are N unique files in the system (the term file represents 
any generic object that may be downloaded), each with an 
associated request rate λi for file i per node (the request rates 
are uniform across nodes). We assume that each file is of equal 
size. Nodes have finite local storage space to store file replicas. 
We assume that the storage space at each node is equal and has 
the capacity to store K files. A file may have multiple replicas 
in the system (i.e. ni ≥ 1 where ni is the number of replicas of 
file i in the system). Thus, a node will always find a file it is 
looking for. The specifics of the search mechanism are not  

 
Figure 1.  Peer-to-Peer System 

important as long as the download requests for file i are equally 
distributed over the ni replicas of file i in the system. We 
estimate the network bandwidth used in downloading a file by 
the average number of links along the shortest path to the 
nearest replica of the file. The notation for the various system 
parameters discussed is: 

M = number of nodes in the system 
N  = number of unique files in the system 
K  = per-node storage size in number of files  
λi  = request rate of file i per node      

λ  = 
1

N
ii

λ
=∑  

ni   = number of replicas of file i in the system 
V  = number of nodes in the underlying link-level topology 
τi(ni) = average number of links to nearest replica for file i 

    when there are ni  replicas of the file in the system. 

III. BENEFITS OF PROPORTIONAL REPLICATION 
As discussed earlier, [18] showed that selecting ni ∝ λi as 

the replica distribution offers significant user-level benefits. In 
this paper, we show that this distribution has system-level 
benefits as well. We focus on the average number of links 
traversed per download as our metric for system performance 
since it provides us with an estimate of the network bandwidth 
that each download “consumes”. If the objective is to minimize 
the network bandwidth used, the download source should be 
the nearest replica if multiple replicas of the file are available. 
We derive an expression for the relation between the average 
number of links to the nearest replica of a file to the number of 
replicas of the file assuming that the replicas are uniformly 
distributed over the network. Using the derived expression, we 
formulate and solve our optimization problem to find the 
optimum replica distribution is, once again, ni ∝ λi. We then 
briefly address our assumption of uniform distribution of 
replicas and show (via simulations) that if all peers have the 
same request rates, cache management automatically results in 
a uniform distribution of the replicas over the network. 

A. Link Distance to the Nearest Replica 
Most of the popular topological models of the Internet and 

several other common topologies have the property of 
exponential expansion (i.e. the number of unique nodes 
reached within a hop distance h is exponentially related to the 
hop distance) [15]. Therefore, we assume our link-level 
network topology to have this exponential expansion as well. 
Clearly, not every node on the link level topology will be a 
participating peer. We assume that the participating peers are 
uniformly distributed over the entire network. The following 
theorem states our main result that τi, the average number of 
link-level hops to the nearest replica of file i, is logarithmically 
related to ni, the number of replicas of file i, when the 
underlying link-level topology has an exponential expansion. 

Theorem 1:  
For a peer-to-peer network of size M where the underlying 

link-level topology has an exponential expansion, i.e. the 
number of nodes reachable in h hops is kdh where k and d are 



constants based on the link-level topology and the M peers are 
uniformly distributed over the link-level topology, for large 
networks (i.e. as M → ∞) τi(ni), the average number of links 
traversed in downloading file i from its nearest source, is 
related to the number of replicas of file i, ni, as follows: 

τi(ni) = logd(M/ni) + C           (1) 

(where C is constant) for finite ni, assuming that the ni replicas 
of a file are uniformly distributed over the participating peers.  

Proof: 
We wish to calculate the expected number of link-level 

hops to the nearest replica of the file to be downloaded given 
the number of replicas of that file in the network.  

Assuming that each node of the link-level topology graph is 
equally-likely to be a participant in the peer-to-peer network, if 
there are V nodes in the link-level topology graph, the 
probability that a randomly selected node is a participant in the 
peer-to-peer network is M/V. Let Sh be the expected number of 
participating peers reachable in h hops. Since the underlying 
link-level topology has exponential expansion, kdh link-level 
topology graph nodes (where k and d are constants based on the 
link-level topology) can be reached in h hops. These kdh nodes 
are participating peers with probability M/V. Therefore,  

Sh = (M/V)kdh           (2) 

Assuming that the replicas of a file are uniformly 
distributed in the network, the probability of finding file i at a 
randomly selected node is ni/M when there are ni replicas of the 
file in the network. In addition to the notation defined earlier, 
define: Ph as the probability that, from a randomly selected 
requesting node, the nearest replica of file i is available exactly 
at h link-level hops and Fh as the probability that no peer within 
h link-level hops of that requesting node has file i. 

Therefore, Ph=Fh−1−Fh. The average link-level hop distance 
to the nearest replica is: τi(ni) = 0

MH
hh

hP
=∑  where HM  is the link-

level distance within which all the M peers can be reached.  
Hence,           

τi(ni) = 11
[ ]MH

h hh
h F F−=

−∑   

                   = 1

0
MH

hh
F−

=∑   −  HM MHF  

Using the assumption that the probability of finding file i at 
a node is independent of the probability of finding that file at 
any other node, we can write Fh = (1 ) hS

in M− . Since, ni ≥ 1, 

MHF , the probability that the file is not found even after 
probing all nodes, is zero. Therefore, 

τi(ni) = 1

0
(1 )

h
M

M kdH V
ih

n M−

=
−∑  

Using the Euler-Maclaurin summation formula:   τi(ni) = 

( 1) ( 1)
,1

0

(1 ) [ ( ) (0)]
!

M hH M kd n k kkV
i M f nk

Bn M dh f H f R
k

− −
=

− + − +∑∫  

where Bk are the Bernoulli numbers, f(h) = (1 )
hM kd

V
in M− , 

f(k)(h) is the kth derivative of f(h) and Rf,n is the remainder term 
in the summation for function f(h). 

Define t = (M/V)kdh. Therefore, h = logd(Vt/kM) and, hence, 
dh = dt/(tlnd). At h = HM, t = M and at h = 0, t = 1 (the peer 
downloading the file is a participating peer). Therefore: τi(ni) = 

( 1) ( 1)
,1

1

(1 )1 [ ( ) (0)]
ln !

M t
n k ki k

M f nk

n M Bdt f H f R
d t k

− −
=

− + − +∑∫   

Using the Euler-Maclaurin summation formula again, we 
get: τi(ni) = 

1 ( 1) ( 1)
,1 1

(1 )1 [ ( ) (1)]
ln !

t
M n k ki k

g nt k

n M B g M g R
d t k

− − −
= =

 − − − − 
 
∑ ∑

 ( 1) ( 1)
,1

[ ( ) (0)]
!

n k kk
M f nk

B f H f R
k

− −
=

+ − +∑    

where g(t) = (1 )t
in M t− , g(k)(t) is the kth derivative of g(t) and 

Rg,n is the remainder term in the summation for function g(t). 

Since, Bk = 0 for odd k (other than 1) and B4 = 1/720, we 
can neglect the higher-order terms beyond k = 2 and the 
remainder term in the Euler-Maclaurin summation formulas. 
The required g(t), f(h) and g(1)(t), f(1)(h) terms at the limits can 
be evaluated as: 

g(1) = (1−ni/M)  

g(M) = (1−ni/M)M/M 

g(1)(t) = (1−ni/M)t/t[ln(1−ni/M) − (1/t)]     

Hence, g’(1) = (1−ni/M) [ln(1−ni/M) − 1] 
g’(M) = [(1−ni/M)M/M][ln(1−ni/M) − 1] 

f(0) = (1−ni/M) 

f(HM) = (1−ni/M)M 

f(1)(h) = ln(1−ni/M)f(h)dhlnd     

Hence,  f(1)(0) = (1−ni/M)ln(1−ni/M) lnd  
f(1)(HM) = M lnd(1−ni/M)M ln(1−ni/M) 

As discussed earlier, the probability that file is not found even 
after probing all nodes 

MHF = (1−ni/M)M = 0. Hence, g(M), 
g(1)(M), f(HM), f(1)(HM) are all 0. Therefore, 

1

1

(1 )1 1( ) (1 )
ln 2

t
M i

i i it

n Mn n M
d t

τ −

=

 −= + − 
 
∑  

1 1 1(1 )[1 ln(1 )] (1 )
ln 12 2i i in M n M n M

d
 + − − − − −  

 1 (1 ) ln(1 ) ln( )
12 i in M n M d+ − −  

   1

1

(1 )1 1 1 1 1(1 )
ln 2 12 ln 2

t
M i

it

n M
n M

d t d
−

=

−   = + − + −    
∑

 1 1(1 ) ln(1 ) ln
12 lni in M n M d

d
 + − − −  

                                      



 
Figure 2.  Link distance to the Nearest Replica (1000 peers, link topology: 

10,254-node PLRG with rank exponent 2.25) 

As M→∞, applying the series summation 
1

(1 1 )k

k

x
k

∞

=

−∑  

= lnx, we can write 1

1

(1 )lim
t

M i
tM

n M
t

−

=→∞

−∑ = ln(M/ni). As 

M→∞, the ln(M/ni) term will dominate the other (1−ni/M) 
terms for finite ni and, hence, we can neglect the other terms to 
finally show: 

τi(ni) = (1/lnd )[ln(M/ni)] + C = logd(M/ni) + C 

 Q.E.D. 

The above theorem establishes the logarithmic relation of 
τi, the average number of link-level hops to the nearest replica 
of file i, to ni, the number of replicas of file i for M → ∞. Our 
simulations indicate that the relation holds for smaller values of 
M also. In Fig. 2, we show the simulation results for a peer-to-
peer network of 1000 peers with an underlying 10,254-node 
PLRG (power law random graph [6]) link-level topology of 
power-law rank-exponent 2.25 (parameters motivated by [6], 
[15]) with the participating peers chosen among the link-level 
topology nodes uniformly at random, and the targeted number 
of replicas placed at the participating peers selected uniformly 
at random. The link distances shown are the average distance 
from each participating peer to the nearest replica. Other 
topologies with exponential expansion give similar results. 

B. Minimization of Network Bandwidth Used 
Our objective is to find the optimum value for ni, the 

number of replicas of file i (for all i), which minimizes τ, the 
average number of links traversed in satisfying file requests, 
i.e., 

τ  =
1

N i
i

λ
λ=∑ τi(ni)            (3)  

Thus, our optimization problem may be stated as: 

         
1

1{ }
( )

N
i i

N i
i iin

nMin
λτ τ
λ=

=

 =  
∑              (4) 

Subject to:  

1

N
ii

n KM
=

≤∑             (5) 

The constraint in (5) states that the total number of replicas of 
all the files should not exceed the total storage available. Since 
there is no benefit derived from having multiple replicas of a 
file at a node, the number of replicas of any file can never be 
more than the number of nodes. Further, there is at least one 
replica of each file. These two conditions give 2N other 
inequality constraints – 

       ni ≤ M for all i = 1 to N           (6) 

       ni ≥ 1 for all i = 1 to N           (7) 

This is a straightforward optimization problem and we state 
the solution as the following theorem: 

Theorem 2:  
 For a peer-to-peer network whose underlying link-level 

topology is such that the number of links traversed in 
downloading file i from its nearest source, is related to the 
number of replicas of file i, ni, as τi(ni) = αlogd(M/ni) + C, and 
the storage capacity at each node is equal, then the network 
bandwidth used (measured as the average number of links 
traversed in a download) is minimized when the number of 
replicas, ni, of file i is piece-wise linear with respect to the file 
request rate λi, (i = 1,2, …, N ) i.e. 

(i) The number of replicas of each file ni is proportional to the 
file request rate λi i.e.  

    ni ∝ λi                  (8) 

if 
KKM

i 11 ≤≤
λ
λ  ∀i, and, 

(ii) The number of replicas 

        ni = Max(1,Min(
0γ
βλi , M))            (9) 

where γ0 is s.t. 1

N
ii

n KM
=

=∑ , in the general case. 

Proof: 
The classical approach to solving constrained optimization 

problems is the method of Lagrange multipliers. First we will 
show the result for part (i). We will ignore the constraints 
specified by (6) and (7) for now and instead show that our 
optimal solution satisfies these constraints under conditions on 
λi specified in part (i). The Lagrangian of our constrained 

  
Figure 3.  Optimal Replica Distribution: (i) under constraints on file request 

rates in (8) (ii) in the general case. 



optimization problem is: 

H = 
1

N i
i

λ
λ=∑ τI(NI) + γ (

1

N
ii

n KM
=

−∑ )  

Minimizing H over all ni for i = 1 to N: 

0i i

i i

H
n n

λ τ γ
λ

∂∂ = + =
∂ ∂

 i = 1 to N       (10) 

Using τi(ni) = α logd(M/ni) + C = −β ln(ni) + c’,   

i

i in n
τ β∂ = −

∂
       

Substituting this in  (10), we obtain, 

ni  =  iλ β
λ γ

 

Applying the constraint 
1

N
ii

n KM
=

=∑  to remove the 
unknown constant β/γ, we obtain the optimum number of 
replicas as: 

   ni  =  iλ
λ

KM i = 1 to N       (11)  

The constraints in  (6) and (7) are satisfied if 1 1i

KM K
λ
λ

≤ ≤ ∀i. 

This proves part (i) of the theorem. 

Without this condition on λi, one can rewrite the problem as 
a maximization problem using a modified Lagrangian. Using 
τi(ni) = −β ln(ni) + c, and including both the constraints  in  (6) 
and (7) and rewriting the ni ≥ 1 constraint as −ni ≤ −1, the 
modified Lagrangian is: 

G = β [
1

ln( )N
i ii

nλ
=∑ ] − γ0 [ 1

N
ii

n KM
=

−∑ ]  

       − 
1

( )N
i ii

n Mγ
=

−∑  − 
1

N
ii

α
=∑ (−ni + 1) 

The Kuhn Tucker Conditions for the modified Lagrangian are: 

i

in
λ β − γi − γ0 +α i = 0    for  i = 1 to N             (12) 

1

N
ii

n KM
=

≤∑ ,  γ0 ≥ 0,   and   γ0[ 1

N
ii

n KM
=

−∑ ] = 0        (13a) 

ni ≤  M,   γi ≥ 0,   and   γi (ni − M) = 0    for  i = 1 to N       (13b) 

−ni ≤ −1, αi ≥ 0,  and   αi (−ni +1) = 0    for  i = 1 to N       (13c) 

From  (12):  ni  =
0

i

i i

λ β
γ γ α+ −

 

(13b) and (13c) imply that: either γi = 0  or  ni = M, and also 
either  αi = 0  or  ni = 1, respectively. Therefore, the optimum 
solution is: 

   ni = Max(1, Min(
0

iλ β
γ

, M))      

where, from (13a), γ0 is such that 
1

N
ii

n KM
=

=∑  when the 
storage size is not large enough to store all the files (i.e. N ≥ K). 
This proves part (ii) of the theorem. 

 Q.E.D. 

In the remaining discussion, we assume 1 1i

KM K
λ
λ

≤ ≤ ∀i 

and use (11) as the optimal replica distribution. For sufficiently 

large KM, 1i

KM
λ
λ

≥  should be satisfied. If 1i

K
λ
λ

≥ , the 

optimal distribution is for the higher request rate files to be 
located at all M nodes; but if a file is located at all nodes, we 
can simply assume that they are not part of the peer-to-peer 
system as no one ever lacks them and, hence, no download is 
ever made for these files. Without these high request rate files 

in the system, 1i

K
λ
λ

≤  should be satisfied. 

C. Uniform Distribution of Replicas 
The assumption of uniform distribution of file replicas in 

the network allows us to say that the probability of finding file i 
at a randomly selected node is ni/M when there are ni replicas 
of the file in the network. In this section, we wish to verify that 
in our model of a peer-to-peer system where nodes have fixed 
storage (and, consequently, must use some cache management 
algorithm), the replicas are indeed uniformly distributed at 
“equilibrium” when all peers have the same file access pattern. 
Let us clarify what we mean by “equilibrium”. Suppose that 
each file is at one node (the “origin server” for that file) 
initially. As nodes make requests and get these files, the 
number of replicas for each file increases. However, since the 
storage is limited, nodes will eventually have to delete some of 
these replicas. Thus, the number of replicas changes from the 
initial condition of one replica per file over time. We define the 
system to be in equilibrium when the number of replicas of 
each file does not change (on average, over some time 
interval), i.e., the “drift” is zero. 

A generic un-annotated network topology has no physical 
location associations which makes discussing the distribution 
of replicas in the system difficult. Therefore, we introduce a 
coordinate system in our network. Relative to any one 
particular node (the “origin”-node), one can think of the 
location of the other nodes as their hop distance to the origin-
node. Thus, relative to the origin-node, the node location can 
be specified using polar coordinates. A radially different 
pattern is not possible if the file request patterns and the per-
node storage capacity are uniform across all nodes, and the 
topological difference among the nodes is minimal. Therefore, 
the ratio of the number of replicas of a file to the number of 
nodes at each hop distance from the origin-node is an adequate 
measure of file distribution. For example, if this ratio is the 
same at each hop-distance, one can conclude that the file 
replicas are uniformly distributed in the network. In contrast, if  



 

Figure 4.  Distribution of files at different hop distances from the Origin 
Server for files with different request rates 

this ratio were to decrease with increasing hop distance when 
the origin server is chosen to be the origin-node, one would 
conclude that the probability of finding the file is higher at 
nodes closer to the origin server. For any simulation run, after 
the topology instance is generated, the number of nodes located 
at each hop distance from the origin-node is easily computed. 
Statistics for the number of nodes that have a file can be 
collected after the simulation has run for a sufficient length of 
time (reached “equilibrium”). 

Fig. 4 shows the file distribution, with a single origin 
server, for three different files – one with a very high request 
rate, another with a moderate request rate and the third with a 
very low request rate. The simulation had 1000 peers with a 
storage capacity to store 10 files each and there were a total of 
100 unique files in the system. The file request rates were Zipf-
distributed with a zipf-exponent of 1.0 which has been found to 
be adequate to capture the skew in request rates for peer-to-
peer systems [7] and web environments [2]. The underlying 
link-level topology was the 10,254-node PLRG discussed 
earlier. The participating peers were uniformly chosen from the 
link-level topology nodes. The file replacement policy when 
the space was needed for a newly requested file was LRU (i.e. 
the Least Recently Used file is replaced). 

For the simulation results shown in Fig. 4, the number of 
replicas used to compute the fraction of nodes that have the file 
at each hop distance is the average value over 1000 simulation 
iterations after the steady-state replica distribution was reached. 
The deviation from the overall fraction of nodes with the file, at 
different hop distances, is a measure of how uneven the file 
distribution is. As seen in the figure, relative to the overall 
fraction of nodes with the file, the variation in the fraction of 
nodes with the file at different hop distances is very small. 
Therefore, we conclude that when all the participating peers 
have the same file request rates, at equilibrium, the replicas of a 
file are uniformly distributed over the network. 

IV. CACHE REPLACEMENT ALGORITHMS FOR 
PROPORTIONAL REPLICA DISTRIBUTION 

Ideally, we wish our peer-to-peer system to be autonomic 
and operate at optimal or near-optimal performance with no 
external intervention (as opposed to measuring file request  

  
Figure 5.  Number of Replicas vs. Request Rate 

rates periodically and then populating the network with a 
proportional number of replicas by a centralized mechanism).  
In Section 3.C, we discussed a peer-to-peer system where the 
peers had finite storage space and if space was needed for a 
newly requested file then a previously obtained file was deleted 
using the LRU file replacement policy (except that the last 
replica of a file is never deleted). We plot the steady-state 
distribution of the number of replicas of each file against the 
file request rate in Fig. 5 for the same simulation. As we can 
see, the LRU cache replacement policy obtains near linear 
proportionality except for high request rate files.  

We also simulated other common cache management 
algorithms such as FIFO (First-In, First-Out: replace the oldest 
file), LFU (Least Frequently Used: replace the least frequently 
used file) and Random-Delete (randomly select the file to be 
replaced) and the results are shown in Fig. 5 alongside the 
results for LRU. All these algorithms generate a replica 
distribution similar to LRU: LFU is closer to the optimal 
distribution than LRU while FIFO and Random-Delete are 
slightly further from it than LRU.  

While none of the known cache management algorithms 
give us exactly the desired linear proportionality, an 
equilibrium analysis of Random Delete (when space needs to 
be made in the cache, one of the files is randomly selected for 
deletion) provided us insights into possible ways for 
constructing mechanisms to achieve the linear proportionality 
in a decentralized manner. 

Each file request when the file is not available in the local 
cache results in that file being brought into the cache. Thus, the 
replicas for file i are created at a rate λi(1−ni/M). With random 
deletion, the file removal rate is proportional to the number of 
replicas of the file in the system. At equilibrium, the replica 
creation rate should equal the replica deletion rate. Thus, at the 
equilibrium distribution, we have:  

λi(1− ni/M) = Cni 

where C is a proportionality constant. This explains why 
Random Delete does not give linear proportionality.  

A keen observer will note that a replica creation rate of λi 
will achieve linear proportionality with Random Delete file 
replacements. The deviation from a λi creation rate was due to  



 
Figure 6.  Optimal Cache Management Algorithms 

replicas not being created when the file is available in the local 
cache. Creating a replica when the requested file is available in 
local cache can rectify this. Since the replica cannot be created 
in the local cache, it must be created at a different peer. This 
Create-Extra+Random-Delete algorithm was simulated and the 
results are shown in Fig. 6. As expected, the populate-extra 
algorithm does give us the linear proportionality in number of 
replicas. Writing on other peers caches, however, defeats our 
original objective as the extra download incurred on every 
request that is locally satisfied is likely to negate any 
performance benefit derived from the replica distribution being 
closer to optimal. It would be better if we could adjust the file 
deletion rate to be proportional to ni(1− ni/M). This can be 
achieved if the file to be deleted is not selected with uniform 
probability from the cache but is weighted according to 
(1− ni/M). Since, each node does not know the total number of 
replicas of a file in the network locally, we need to devise other 
methods to achieve the (1− ni/M) biasing in the file selection 
for deletion. We know that if the desired linear proportionality 
was achieved, ni/M = Kλi/λ. Therefore, if the global file request 
rates were known locally, we could devise an algorithm that 
selects the file to be deleted with probability proportional to 
Kλi/λ, we may get the desired linear proportionality. The 
simulation results for this DeleteProb_RequestRatesKnown 
algorithm are shown in Fig. 6. Unfortunately, in real systems, it 
is difficult to obtain the global file request rates locally so this 
algorithm does not seem very practical. 

To evaluate the benefits (against the cost) of each of these 
algorithms, we should know the average number of links 
traversed per download for these algorithms. Using the τi(ni) = 
α logd(M/ni) + C expression for the average number of links 
traversed in downloading a file that has ni replicas, we can 
compute the average number of links traversed per download 
using (3) to be: 

τ  = α
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i

λ
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To remove the effects of the underlying network topology, 
we extract the replica-distribution-dependent term from τ and 
define a new system performance metric, normalized network  

TABLE I.  NORMALIZED NETWORK BANDWIDTH USED VS. CACHE 
REPLACEMENT ALGORITHM 

Algorithm LRU LFU FIFO “Optimal” 

τ' 1.1897 1.176 1.203 1.1746 
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We compute the normalized network bandwidth used from 
the steady-state replica distribution achieved by the different 
cache replacement algorithms in these simulations. The 
numbers are listed in Table 1. Comparing the performance of 
the different algorithms, we find that no significant advantage 
is obtained by using LFU (especially taking into account the 
added complexity of keeping frequency counters) instead of 
LRU or FIFO and that even the optimal cache replacement 
algorithm offers no significant advantage.  Thus, LRU or FIFO 
cache replacement is a strong candidate for use in our peer-to-
peer system and we study LRU’s performance in peer-to-peer 
environment in more detail in the next section. 

V. LRU CACHE REPLACEMENT IN PEER-TO-PEER 
ENVIRONMENT 

So far, our simulations used a zipf-distributed file request 
rate with zipf-exponent of 1.0. To explore the effect of skew in 
file request rates, we show the simulation results for the 
number of replicas against the file request rate in Fig. 7 for two 
other file request rate distributions: a more skewed file request 
rate distribution (zipf-distribution with zipf-exponent 1.5), and 
a less-skewed request rate distribution where the request rates 
for different files are uniformly distributed between the lowest 
and the highest file request rates.  

These results suggest that for applications where the access 
patterns do not have much skew, LRU will perform very well. 
Notice that even when the skew in file request rates is so large 
that the optimal replica distribution is now defined by  (9) 
instead of  (8), LRU file replacement still achieves near optimal 
replica distribution. 

An analytical model of a network with LRU storage can be  

 
Figure 7.  LRU performance with varying levels of skew in the request rate 

distribution 



constructed as follows. Since the probability of finding a file is 
the same across the network, it is sufficient to find the 
probability of a file being in storage at any random node. 
Further, one can construct the model from the perspective of a 
particular file, say, file i – all requests for file i move the file to 
the top-most position in the storage; a request for any other 
files moves file i down to one lower position. We set up a 
Markov Chain to represent the position of the file in the stack, 
i.e. the system is in state k when the file is in the kth position 
from the top of the LRU stack: state 1 implies that the file is at 
the top-most position in the LRU stack; state N (N is the 
storage capacity in number of files) means that the file is at the 
bottom-most position in the LRU stack. An additional state, 
state 0, is defined to represent the state when the file is not in 
the storage. A satisfied request for the file always changes the 
system state to 1 (as the file moves to top-most position in the 
storage). A satisfied request for any other file changes the 
system state to next higher state (as that other file now moves 
to the top-most position pushing all other files one position 
down). Satisfied requests for the file include the storage 
owner’s requests for this file (since all file requests are 
eventually satisfied, this contributes to transitions to state 1 
from all the other states) and the requests for the file from the 
other nodes that are satisfied (since nodes always share their 
files, this contributes to transitions to state 1 from all states 
other than state 0). 

The model is shown in Fig. 8 where λi is the file request 
rate for file i, λi' is the total request rate including file i’s 
requests from other nodes satisfied by this node and µij,j+1 is the 
rate at which file i is pushed down from position j to position 
j+1 as requests for other files are served by the node. While λi 
is given, the file requests from the other nodes (remote 
requests) complicate the expressions for λi'. A node sends out a 
file request only when it does not have the file. Thus, the rate at 
which the other M-1 nodes send a file request for this file to the 
peer-to-peer network is λipi0, where pi0 is the probability that 
the file i is not available at a node. The nodes that have file i in 
their cache satisfy these requests for file i sent to the peer-to- 
peer network. Assuming that the requests are uniformly 
distributed over the nodes that have the file, the request rate for 
file i served by a node that has file i on account of requests 
from other nodes equals  (M−1)λi pi0 /M(1− pi0). Unfortunately 
computing µij,j+1 is much harder for j>1. For j=1, the rate at 
which file i is pushed down is the total rate at which requests 
for all other files are served by this node (including both local 
and remote requests). Thus, µi12 =  k≠iλk(1+pk0) where pk0 is the 
probability of not finding file k. However, for j>1, one must 
adjust these rates for the possibility that the requested file may 
be in a position <j in which case, an access to a file k≠i will not 

 

Figure 8.  Markov Chain model for the position of file i when per-node 
storage capacity is K 

affect position of file i in the LRU stack. 

Reference [5] suggests one technique to circumvent this 
complexity. The key idea is that at steady-state, the push-down 
rate for file i from position j to j+1 must equal the rate at which 
file i is brought into top j positions of the LRU stack (otherwise 
the probability of finding the file in these top j positions 
becomes unbounded). This conservation of flow principle 
allows us to compute µij,j+1. File i is brought into the top j 
positions under two conditions: (i) a local request for file i 
when file i is not in any of the top j positions: the file may be 
brought to the top position from positions j+1…K of the local 
cache if it is available there or it may be brought from a remote 
node (since we assume that a file that may be requested never 
disappears from the system, all file requests are satisfied) (ii) a 
remote request for file i: since the file i is not in any of the top j 
positions, it must be in the remaining j+1…K positions in the 
local cache for it to show up in one of the top j positions on a 
remote request. The local requests contribute λi[1−P(i,1…j)] to 
the push-down rate where P(i,1…j) is the probability that file i 
is in one of the top j positions in the local cache. The remote 
requests contribute an additional λi[(M−1)pi0/M(1−pi0)] 
P(i,j+1…K|j) where P(i,j+1…K|j) is the probability that file i is 
in positions j+1…K of the local cache given that it is not in any 
of the top j positions in the local cache. Thus, 

µij,j+1 = λi[1−P(i,1…j)]            (15) 
            + λi[(M−1) pi0 /M(1− pi0)]P(i,j+1…K|j)       

Even after obtaining all the required rates for the Markov 
Chain model, calculating individual probabilities is very 
involved. [5] provides an approximate expression for pij, the 
probability that file i is at position j in the LRU stack in terms 
of the push-down rates at position j−1 as follows: 
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Other probabilities are defined in terms of pij as: 
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         pi0  = 1 − P(i,1…K)          (19) 

 Starting with P(i,1) = λi, we can iteratively solve (15)-(19)  
until the value of pi0 converges. The complexity is O(KN) [5] 
and, in our computations, the value of pi0 converged in only a 
few iterations. In Fig. 9, we plot the number of replicas of each 
file obtained from simulation and MP(i,1…K), the product of 
the number of peers in the system and the probability of finding 
file i in the local cache, obtained from (15)-(19) against the file 
request rates for M = 5000, N = 500, K = 50 and zipf-
distributed {λi} with zipf-exponent 1.0. As shown in the figure, 
the analytical model agrees very well with the simulation  



 
Figure 9.  Validation of Steady-state Analytical Model for LRU  

results. System designers can use this model to estimate the 
steady-state replica distribution for different system parameters 
and the predicted values can be used to estimate the required 
network bandwidth using (14) for a given cache size or for 
selecting the appropriate size of the per-node user cache to 
limit the required network bandwidth within a desired value. 

VI. TRANSIENT PERFORMANCE OF THE LRU CACHE 
REPLACEMENT POLICY 

As we saw in earlier sections, at steady state, LRU and other 
popular cache management algorithms can achieve near-
proportional replication even when the access rates are 
extremely skewed. All our simulations in Fig. 4 had started 
with only a single replica of each file (at their respective origin 
servers) and, the equilibrium distribution was eventually 
achieved in all the cases. Thus, we know that reasonable cache 
replacement policies will also adapt the file replication 
distribution if the user access patterns change. However, we 
must examine the transient performance of the system to assure 
ourselves that: either (a) the transient period is short, or (b) the 
performance during the transient period is acceptable (i.e. the 
peer-to-peer network does not crash for example). We 
conducted a number of simulation runs to study the transient 
performance with the different cache replacement algorithms. 
The basic simulation setup here was identical to that in Section 
4 except that at a certain pre-determined simulation iteration, 
the request rate distribution was changed from zipf-distributed 
with exponent 1 to an exponent of 0 where each file now had 
the same request rates at all nodes. Fig. 10 shows the number of 
replicas of each file1 with LRU cache replacement with 
increasing simulation iterations starting from a few iterations 
prior to the change. To get a sense of the scale of the x-axis, we 
note that in each simulation iteration, on average, each node 
makes one file request. In the zipf-exponent-1 request rate 
distribution, the lowest file request rate is 0.0001 
requests/node/iteration. Thus, on average, in 10 iterations, the 
least popular file is requested only once.  

From Fig. 10, we note that it takes about 12-13 iterations to 
reach the new steady-state in the presented simulation scenario. 
For zipf-exponent-0 request rate distribution, on average, there 
are 10 requests for each file per iteration. The file with the 
lowest request rate in the original distribution had 1 replica at  

                                                        
1 In Figs. 10, 11 and 13, each curve is for a different file (we show curves 

for 12 files out of the 100 files in the simulation) and shows the number of 
replicas of the file in the iteration indicated on the x-axis. 

 
Figure 10.  Transient behavior of LRU (the request rate distribution changed at 

iteration label 5) 

 
Figure 11.  Transient behavior of LRU (the request rate distribution changed at 

iteration label 5) 

iteration labeled 5 and according to the zipf-exponent-0 request 
rate distribution there should be about 100 replicas in the 
system. Since new replicas are created only upon requests for 
the file, it will take at least 10 iterations to create 100 replicas. 
Thus, the 12-13 iterations LRU took to reach the new 
equilibrium distribution is very reasonable. 

In the aforementioned simulation, we also changed the 
request rate distribution back to the original zipf-exponent-1 
distribution 400 simulation iterations after the change to the 
zipf-exponent-0 request rate distribution. In Fig. 11, we show 
the number of replicas of each file with increasing simulation 
iterations starting a few iterations prior to when the request 
rates revert back to the original distribution. 

Once again, we see that the number of replicas reaches the 
neighborhood of the steady-state values in about 12-13 
iterations after which we can say that the system performance 
is close to the steady-state performance. We also note here that 
the rate of convergence to the new steady-state distribution 
appears to be independent to the individual request rates in both 
Fig. 10 and 11. 

Similar experiments were performed for FIFO, LFU and the 
“optimal” cache replacement algorithm discussed in Section 4. 
Instead of presenting the per-file details, as in Figs. 10, 11, we 
condense the replica distribution information by computing the 
normalized network bandwidth used, as defined in Section 4, 
for the replica distribution at each iteration and show only that  



 
Figure 12.  Transient Performance of different cache replacement algorithms  

in Fig. 12. At the 4200th iteration, the request rate distribution 
was changed from zipf-exponent-1 to zipf-exponent-0 and at 
the 4600th iteration it was changed back to zipf-exponent-0. As 
shown in the figure, the duration of the transient period with 
FIFO is the same as that with LRU while the optimal cache 
replacement algorithm constructed in Section 4 has a slightly 
longer transient period and a slightly worse performance during 
the transient period (even though the simulations assumed that 
the new file request rate distribution is relayed to the algorithm 
at all nodes instantaneously). 

As we can see LFU adapts to the change in request rate very 
poorly (it has better transient performance than other 
algorithms upon reverting back to the original request rate 
distribution only because it had never achieved the steady-state 
distribution for the equal request rate distribution and when the 
request rate distribution reverted back to zipf-exponent-1 
distribution, the replica distribution was close to the steady-
state distribution of LFU for the zipf-exponent-1 distribution).  
This happened because our simulations used an infinite length 
window over which the frequency is counted (with an upper 
bound on the maximum counter value) and so it takes a long 
time for the algorithm to register the change in access patterns 
(effectively, the replica distribution never changed). A shorter 
window should perform better than shown (but not necessarily 

better than LRU) but maintaining a sliding window is a 
complex task.  

These results suggest that LRU or FIFO may be an adequate 
choice for cache replacement in peer-to-peer systems. To better 
understand the transient behavior of LRU, we now attempt to 
develop an analytical model for the transient behavior of LRU 
cache replacement. 

Following the approach in [3], which analyzed the transient 
performance of LRU for a database application, we first derive 
the expressions for LRU performance in the cache warm-up 
period (i.e. starting with an empty cache to reaching the steady-
state replica distribution). As we saw in the previous section, 
the number of replicas of each file at steady state can be 
computed as MP(i,1…K) where M is the number of peers in the 
network and P(i,1…K) is the probability of finding file i in the 
cache. We wish to compute the time-dependent probability of 
finding file i in the cache after T accesses, Pt(i,T), starting with 
an empty cache. Note that once there are enough accesses that 
LRU replacement policy kicks in, the desired probabilities are 
defined by (15)-(19) as derived in Section 5. In this section, we 
are only interested in computing the probabilities while the 
cache is not full.  

We can compute Pt(i,T) if we know the probability that file i 
is not in the cache after T accesses, pt

i0(T), using  (19). After T 
accesses, file i is not in the cache only if none of the previous T 
accesses were for file i. Therefore, 

pt
i0(T) = 1

T
iλ

λ
 −  

         (20) 

where λi is the request rate for file i. Note that if the file is not 
in the cache, the additional term for requests for file i from 
other nodes satisfied by this node that complicated (15) is not 
required in the warm-up transient analysis.  

Given pt
i0(T), the probability of finding file i in the cache 

after T accesses is: 

  Pt(i,T) = 1− 1
T

iλ
λ

 −  
         (21) 

These expressions apply only if the cache is not full yet i.e. 
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One can iteratively compute (21), (22) for increasing values 
of T beginning with T=1 until (22) is violated. The smallest 
value of T at which (22) is violated is the transient period, 
Ttransient. The values of Pt(i,T) computed at each iteration can be 
used to compute the number of replicas of each file in the 
transient period which can, then, be used to estimate the system 
performance as defined in Section 4 for the transient period.  

We compare the replica distribution during the starting 
period of our simulation with LRU cache replacement to the 
output of our analytical model for the same system parameters 
(M = 1000, N = 100, K = 10 and zipf-distributed {λi} with zipf-
exponent 1.0) in Fig. 13. As we can see in Fig. 13, the transient 
performance predicted by the analysis matches very well with  



 

 
Figure 13.  Validation of Analytical Warm-up Transient Model  

the simulation results for the cache warm-up period. The 
analytical model shows (22) being violated at the 13th iteration 
which is the duration of the warm-up transient period in the 
simulation as well. MPt(i,T) also appears to match well with the 
number of replicas of each file in the warm-up transient 
duration. Beyond the warm-up transient period, we plot the 
replica distribution based on the steady-state probabilities as 
given in Section 5. 

We also note that the values of Pt(i, Ttransient) obtained via 
this iterative process (shown in Fig. 13) are close to the steady-
state probabilities P(i,1…K) that we computed in the previous 
section using (15)-(19)  (the differences arise as we ignored the 
additional term for requests for file i from other nodes satisfied 
by this node). Thus, this warm-up transient model gives us 
another method of estimating the steady-state system 
performance. 

Another key observation is that the warm-up transient period 
of 13 iterations is the same as the transient period in our 
simulations shown in Fig. 10, 11. Thus, the general transient 
period is related to the warm-up transient period. We know that 
if the request pattern changed such that none of the older files 
were to be requested and a new set of files becomes the active 
set, our arguments in development of (21), (22) will apply 
exactly the same. In the general case where the file request rate 
changes are not as drastic, the same calculations for Pt(i,T) as 
in (21) may not apply although the duration of the transient 
period is likely to be shorter or the same as that defined by 
(21), (22) for which the cache is completely populated 
according to the new access pattern. 

Finally, we add that (22) directly demonstrates the role of 
cache size in determining the duration of the transient period. If 
we increase the cache size K to 20 files in our earlier system, 
our computations show that the duration of the warm-up 
transient period increases to 35 iterations (compared to 13 
iterations for K=10). Intuitively, one can see this since a larger 
cache means more entries must clear out before the distribution 
is defined by the new access pattern. When the request rate 
changes are not as drastic, however, we do expect the transient 
period to be shorter.  

Also, recall from Section 4 that the system performance is 
not very sensitive to the replica distribution when the replica 
distribution is close to the optimal distribution. So, for small 
changes, the system performance should remain reasonable 
even through the transient period. 

VII. RELATED WORK 
Aside from dealing with specific issues like free-riding, 

short node lifetimes etc. associated with music/video file 
sharing over the Internet, the most popular application of peer-
to-peer networking, a substantial part of research into peer-to-
peer systems has gone into designing effective mechanisms for 
searching which peer has the desired file which is a difficult 
task if one attempts to build an ideal peer-to-peer system where 
all participants are equal and there are no central servers. Some 
of our analytical work on search performance in unstructured 
peer-to-peer networks [16, 17] is relevant to our work here 
since the average distance to the nearest replica is also the 
number of hops needed to find a source for the desired file in 
flooding-based searches. In particular, our derivation of the 
average distance to the nearest replica over the link-level 
topology in Section 3 has the same steps as the derivation of 
the average distance to the nearest replica over the Erdos-Renyi 
random graph overlay network in [17]. Download performance 
in peer-to-peer networks has also been addressed by [1, 11, 18] 
among others. [11] discusses the gains in reducing the 
download time by splitting a large file into small pieces so as to 
increase the service capacity of a large file rapidly after its 
initial introduction into the peer-to-peer network. [1] provides 
an analytical model for selecting peers so as to minimize the 
download time while [18], like our current work, focuses on 
file replication in seeking the same goal. File replication is also 
discussed by [4, 8, 12] among others. These works are similar 
to our work in that one of their objectives in replication is 
improving the download performance. However, [8, 12] study 
system architecture issues. [4] presents an analytical model for 
a decentralized caching system but since it is in the context of 
web caching, the assumptions are different (e.g. unlike our 
model, cached content has limited lifetime in their scenario). 
Web caching is addressed by many others (e.g. [14, 20]) and, 
even though we study a network of caches, some of this work 
is relevant to ours as our assumptions of uniformity imply that 
the system performance can be inferred from the behavior of a 
single cache and, hence, we find similarities in the analyses 
[14] and conclusions [20]. A content distribution network also 
replicates content at multiple sites (to decrease access latency 
seen by end-users) and optimal allocation of system storage is 
an issue in these networks also (e.g. [9]). While such works 
may incorporate caching/replacement in their investigation, the 



overall model is of centralized control over the multiple sites 
and issues such as replica placement have been the main focus 
of the research in this area. Peer-to-peer networking is also 
being proposed now to support web accesses in cooperative 
mobile environments and [10] presents an analytical model for 
the performance of such a system. Our analytical model in 
Section 5 is very similar to theirs as we both extend the 
analytical model for a stand-alone LRU cache given in [5]. 
Finally, [13], also discusses the “natural” scaling achieved by 
the fact that user requests create additional replicas which 
improves system performance although they focused on the 
system’s ability to find the newly created sources. The 
“scaling” effect observed in [13] regarding the search problem 
in peer-to-peer networks is, in fact, on account of the optimality 
of proportional replication for search in unstructured peer-to-
peer networks which we had shown in [16] for the case of 
uniform distribution of files as assumed in this paper. For the 
search problem in unstructured peer-to-peer networks, we have 
shown the optimality of proportional replication even for the 
case of clustered demands in [19].  

VIII. CONCLUSION 
In this paper, we showed that the average network 

bandwidth used per download is minimized when the number 
of replicas of a file in the network is proportional to the request 
rate for the file i.e. ni ∝ λi ∀i, where ni is the number of replicas 
of file i, and λi is the request rate for file i. This result on 
network-wide benefits of this proportional replication which 
complements our earlier results on the per-node advantages of 
this replica distribution motivated our inquiry into the ability of 
cache replacement algorithms to automatically achieve the 
proportional replication.  We found that cache replacement 
algorithms such as LRU are able to achieve near-proportional 
distribution. Our simulation results indicate that the average 
network bandwidth used per download with the replica 
distribution achieved by LRU is very close to the performance 
achieved with the optimal replica distribution in the cases we 
simulated. An analytical model was developed for computing 
the steady-state replica distribution with LRU in the general 
case. Since the user access patterns may change over time, we 
also investigated the transient performance of some of the 
cache replacement algorithms. The time taken by LRU to 
converge to the new steady-state replica distribution after a 
change in the user access pattern was found to be very close to 
the minimum required by any cache replacement algorithm. 
We also developed an analytical model for the transient 
behavior of LRU. In conclusion, LRU cache replacement 
algorithm is a very attractive mechanism for obtaining the 
network-wide benefits offered by proportional replication in 
peer-to-peer networks. 
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