
Proportional Replication in Peer-to-Peer Networks

Saurabh Tewari, Leonard Kleinrock
Computer Science Department

University of California at Los Angeles
Los Angeles, CA 90095, U.S.A.

{stewari, lk}@cs.ucla.edu

Abstract— We recently showed for peer-to-peer networks, that
having the number of replicas of each object proportional to the
request rate for these objects has many per-node advantages. In
this paper we complement those results to show that this
distribution has network-wide advantages as well. Given these
benefits of proportional replication, the next issue is achieving
proportional replication in a decentralized manner. We show that
local storage management algorithms like LRU automatically
achieve near-proportional replication and that the system
performance with the replica distribution achieved by LRU is
very close to optimal. We also show that the LRU responds to a
change in user access pattern quickly (the number of accesses
taken to reach the new steady-state replica distribution with LRU
is close to the minimum possible with any cache replacement
algorithm). Analytical models are provided for computing the
steady-state network-wide replica distribution and the transient
period for LRU.

Keywords- Peer-to-Peer, File Replication, Cache Management,
LRU, Network Bandwidth, Proportional Replication

I. INTRODUCTION
Peer-to-peer networks offer the promise of systems that

automatically scale in capacity as the number of users increases
and yet are extremely robust, automatically adapting to failures
of nodes/links as well as to changes in usage patterns, all at
virtually no cost. These loosely organized networks of
autonomous entities (user nodes or “peers”), which make their
resources available to other peers, represent a new computing
paradigm where the service consumers are, now, the service
providers as well. So, for example in peer-to-peer file sharing
networks, users share files and if one wants to download a file
and another user is sharing that file, one would download it
directly from that user. Upon obtaining the desired file, one
may also begin to share that file allowing other users to
download from them. Thus, a file is likely to have multiple
replicas in the network with the more popular files having more
replicas (i.e. more sources to download the file from). The
replication of files provides the robustness while its correlation
with popularity provides the automatic scaling according usage
patterns. Since music file sharing over the Internet is the most
popular peer-to-peer networking application, characteristics
associated with music file sharing (e.g. free-riding, short node
lifetimes, large variation in user connection bandwidth and user
shared storage, no limits on user storage allocated for
downloaded content) are usually associated with all peer-to-
peer networking. However, many other applications can benefit
from peer-to-peer networking. For example, peer-to-peer

networking can be used to offload load from the service
provider video server in a video-on-demand service. One may
also conceive of use of peer-to-peer networking in a shared
digital library application (for example, a state-funded library
for all K-12 schools in a state) whereby individual schools (or
school districts) dedicate fixed amounts of storage for the
application; the content is brought in upon a user request and is
kept in the storage and is available to other users at other sites.
For applications such as these, the presence of an intermediary
and/or similarity in the user group simplifies the assumptions
for the peer-to-peer system and it is not unreasonable to assume
that users are similar and well-behaved (i.e. no free-riding, little
variation in interests and resources of each user, long node
lifetimes). If the number of users is not very large and the user
caches are available for long time durations, a centralized
solution for the search problem may be feasible. Hence, in this
paper, we ignore the issue of search costs in our peer-to-peer
system, concentrating exclusively on the downloading aspects
of the peer-to-peer system. [18] showed that when the number
of replicas of each object is proportional to the request rate for
that object, a user has no advantage in sharing one file over the
other (as the download load for each file is equal), the total
download load on each node is same and when queueing delays
are convex in node utilization, the average queueing delay seen
by a downloader is minimized. In this paper, we focus on
system performance aspects and show that in addition to these
user-centric advantages, the proportional replication
distribution also minimizes the network bandwidth used
(measured as the average number of links traversed in a
download). The system model is discussed in Section 2 and the
proof of the optimality of the proportional replication for the
network bandwidth used is presented in Section 3.

Given these benefits of proportional replication, we devote
much of this paper seeking distributed mechanisms to achieve
such a replication. In Section 4, we discuss the performance of
some existing cache management algorithms such as LRU,
LFU, and FIFO. Our simulations show that these algorithms
achieve near-proportional replica distribution. We construct a
cache management algorithm that achieves the proportional
replication and compare system performance with this
algorithm to the system performance when cache management
policy is LRU. Our simulations show that the performance with
LRU is only slightly inferior to the optimal performance.
Therefore, we study the behavior of LRU in peer-to-peer
environments in more detail in Section 5 where an analytical
model is provided to compute the replica distribution LRU will
achieve in different situations which can then be used to
estimate the system performance.

As user interests change over time, the replica distribution
should adapt to the new request rates. Therefore, the utility of
a replica distribution algorithm also depends on its ability to
converge to the new steady-state distribution quickly and/or
maintain adequate performance during the transient period.
We address this issue in Section 6 where our simulations show
that, upon a change in the access pattern, LRU converges to
the new steady-state replica distribution faster than the cache
management algorithm that achieves linearly proportional
replication. We also provide a preliminary analytical model
for estimating the duration of the warm-up transient period
(i.e. the time taken to reach the steady-state replica distribution
starting with an empty buffer) and the replica distribution
during this transient period for LRU. This model can be used
to estimate the transient performance with LRU cache
management by making similar extensions as in [3].

 Some related work is briefly discussed in Section 7
and Section 8 concludes the paper.

II. SYSTEM MODEL
Our abstract peer-to-peer system model is shown in Fig. 1.

The broadband network can have any topology. Our only
assumption is that the network topology has exponential
expansion [15]. As discussed in [15], many commonly used
Internet topology models fit this description. The central server
is optional and shown only to signify that a file never
disappears from the system as a result of cache replacement.
Our simulations do not include the central server and at least
one replica of each file in the system is maintained by
assigning a peer (“origin server”) for each file which must
always keep the file in its cache.

We assume that there are M peers in the system (the terms
peers, users and nodes are used interchangeably in this paper).
There are N unique files in the system (the term file represents
any generic object that may be downloaded), each with an
associated request rate λi for file i per node (the request rates
are uniform across nodes). We assume that each file is of equal
size. Nodes have finite local storage space to store file replicas.
We assume that the storage space at each node is equal and has
the capacity to store K files. A file may have multiple replicas
in the system (i.e. ni ≥ 1 where ni is the number of replicas of
file i in the system). Thus, a node will always find a file it is
looking for. The specifics of the search mechanism are not

Figure 1. Peer-to-Peer System

important as long as the download requests for file i are equally
distributed over the ni replicas of file i in the system. We
estimate the network bandwidth used in downloading a file by
the average number of links along the shortest path to the
nearest replica of the file. The notation for the various system
parameters discussed is:

M = number of nodes in the system
N = number of unique files in the system
K = per-node storage size in number of files
λi = request rate of file i per node

λ =
1

N
ii

λ
=∑

ni = number of replicas of file i in the system
V = number of nodes in the underlying link-level topology
τi(ni) = average number of links to nearest replica for file i

 when there are ni replicas of the file in the system.

III. BENEFITS OF PROPORTIONAL REPLICATION
As discussed earlier, [18] showed that selecting ni ∝ λi as

the replica distribution offers significant user-level benefits. In
this paper, we show that this distribution has system-level
benefits as well. We focus on the average number of links
traversed per download as our metric for system performance
since it provides us with an estimate of the network bandwidth
that each download “consumes”. If the objective is to minimize
the network bandwidth used, the download source should be
the nearest replica if multiple replicas of the file are available.
We derive an expression for the relation between the average
number of links to the nearest replica of a file to the number of
replicas of the file assuming that the replicas are uniformly
distributed over the network. Using the derived expression, we
formulate and solve our optimization problem to find the
optimum replica distribution is, once again, ni ∝ λi. We then
briefly address our assumption of uniform distribution of
replicas and show (via simulations) that if all peers have the
same request rates, cache management automatically results in
a uniform distribution of the replicas over the network.

A. Link Distance to the Nearest Replica
Most of the popular topological models of the Internet and

several other common topologies have the property of
exponential expansion (i.e. the number of unique nodes
reached within a hop distance h is exponentially related to the
hop distance) [15]. Therefore, we assume our link-level
network topology to have this exponential expansion as well.
Clearly, not every node on the link level topology will be a
participating peer. We assume that the participating peers are
uniformly distributed over the entire network. The following
theorem states our main result that τi, the average number of
link-level hops to the nearest replica of file i, is logarithmically
related to ni, the number of replicas of file i, when the
underlying link-level topology has an exponential expansion.

Theorem 1:
For a peer-to-peer network of size M where the underlying

link-level topology has an exponential expansion, i.e. the
number of nodes reachable in h hops is kdh where k and d are

constants based on the link-level topology and the M peers are
uniformly distributed over the link-level topology, for large
networks (i.e. as M → ∞) τi(ni), the average number of links
traversed in downloading file i from its nearest source, is
related to the number of replicas of file i, ni, as follows:

τi(ni) = logd(M/ni) + C (1)

(where C is constant) for finite ni, assuming that the ni replicas
of a file are uniformly distributed over the participating peers.

Proof:
We wish to calculate the expected number of link-level

hops to the nearest replica of the file to be downloaded given
the number of replicas of that file in the network.

Assuming that each node of the link-level topology graph is
equally-likely to be a participant in the peer-to-peer network, if
there are V nodes in the link-level topology graph, the
probability that a randomly selected node is a participant in the
peer-to-peer network is M/V. Let Sh be the expected number of
participating peers reachable in h hops. Since the underlying
link-level topology has exponential expansion, kdh link-level
topology graph nodes (where k and d are constants based on the
link-level topology) can be reached in h hops. These kdh nodes
are participating peers with probability M/V. Therefore,

Sh = (M/V)kdh (2)

Assuming that the replicas of a file are uniformly
distributed in the network, the probability of finding file i at a
randomly selected node is ni/M when there are ni replicas of the
file in the network. In addition to the notation defined earlier,
define: Ph as the probability that, from a randomly selected
requesting node, the nearest replica of file i is available exactly
at h link-level hops and Fh as the probability that no peer within
h link-level hops of that requesting node has file i.

Therefore, Ph=Fh−1−Fh. The average link-level hop distance
to the nearest replica is: τi(ni) = 0

MH
hh

hP
=∑ where HM is the link-

level distance within which all the M peers can be reached.
Hence,

τi(ni) = 11
[]MH

h hh
h F F−=

−∑

 = 1

0
MH

hh
F−

=∑ − HM MHF

Using the assumption that the probability of finding file i at
a node is independent of the probability of finding that file at
any other node, we can write Fh = (1) hS

in M− . Since, ni ≥ 1,

MHF , the probability that the file is not found even after
probing all nodes, is zero. Therefore,

τi(ni) = 1

0
(1)

h
M

M kdH V
ih

n M−

=
−∑

Using the Euler-Maclaurin summation formula: τi(ni) =

(1) (1)
,1

0

(1) [() (0)]
!

M hH M kd n k kkV
i M f nk

Bn M dh f H f R
k

− −
=

− + − +∑∫

where Bk are the Bernoulli numbers, f(h) = (1)
hM kd

V
in M− ,

f(k)(h) is the kth derivative of f(h) and Rf,n is the remainder term
in the summation for function f(h).

Define t = (M/V)kdh. Therefore, h = logd(Vt/kM) and, hence,
dh = dt/(tlnd). At h = HM, t = M and at h = 0, t = 1 (the peer
downloading the file is a participating peer). Therefore: τi(ni) =

(1) (1)
,1

1

(1)1 [() (0)]
ln !

M t
n k ki k

M f nk

n M Bdt f H f R
d t k

− −
=

− + − +∑∫

Using the Euler-Maclaurin summation formula again, we
get: τi(ni) =

1 (1) (1)
,1 1

(1)1 [() (1)]
ln !

t
M n k ki k

g nt k

n M B g M g R
d t k

− − −
= =

 − − − −

∑ ∑

 (1) (1)
,1

[() (0)]
!

n k kk
M f nk

B f H f R
k

− −
=

+ − +∑

where g(t) = (1)t
in M t− , g(k)(t) is the kth derivative of g(t) and

Rg,n is the remainder term in the summation for function g(t).

Since, Bk = 0 for odd k (other than 1) and B4 = 1/720, we
can neglect the higher-order terms beyond k = 2 and the
remainder term in the Euler-Maclaurin summation formulas.
The required g(t), f(h) and g(1)(t), f(1)(h) terms at the limits can
be evaluated as:

g(1) = (1−ni/M)

g(M) = (1−ni/M)M/M

g(1)(t) = (1−ni/M)t/t[ln(1−ni/M) − (1/t)]

Hence, g’(1) = (1−ni/M) [ln(1−ni/M) − 1]
g’(M) = [(1−ni/M)M/M][ln(1−ni/M) − 1]

f(0) = (1−ni/M)

f(HM) = (1−ni/M)M

f(1)(h) = ln(1−ni/M)f(h)dhlnd

Hence, f(1)(0) = (1−ni/M)ln(1−ni/M) lnd
f(1)(HM) = M lnd(1−ni/M)M ln(1−ni/M)

As discussed earlier, the probability that file is not found even
after probing all nodes

MHF = (1−ni/M)M = 0. Hence, g(M),
g(1)(M), f(HM), f(1)(HM) are all 0. Therefore,

1

1

(1)1 1() (1)
ln 2

t
M i

i i it

n Mn n M
d t

τ −

=

 −= + −

∑

1 1 1(1)[1 ln(1)] (1)
ln 12 2i i in M n M n M

d
 + − − − − −

 1 (1) ln(1) ln()
12 i in M n M d+ − −

 1

1

(1)1 1 1 1 1(1)
ln 2 12 ln 2

t
M i

it

n M
n M

d t d
−

=

− = + − + −
∑

 1 1(1) ln(1) ln
12 lni in M n M d

d
 + − − −

Figure 2. Link distance to the Nearest Replica (1000 peers, link topology:

10,254-node PLRG with rank exponent 2.25)

As M→∞, applying the series summation
1

(1 1)k

k

x
k

∞

=

−∑

= lnx, we can write 1

1

(1)lim
t

M i
tM

n M
t

−

=→∞

−∑ = ln(M/ni). As

M→∞, the ln(M/ni) term will dominate the other (1−ni/M)
terms for finite ni and, hence, we can neglect the other terms to
finally show:

τi(ni) = (1/lnd)[ln(M/ni)] + C = logd(M/ni) + C

 Q.E.D.

The above theorem establishes the logarithmic relation of
τi, the average number of link-level hops to the nearest replica
of file i, to ni, the number of replicas of file i for M → ∞. Our
simulations indicate that the relation holds for smaller values of
M also. In Fig. 2, we show the simulation results for a peer-to-
peer network of 1000 peers with an underlying 10,254-node
PLRG (power law random graph [6]) link-level topology of
power-law rank-exponent 2.25 (parameters motivated by [6],
[15]) with the participating peers chosen among the link-level
topology nodes uniformly at random, and the targeted number
of replicas placed at the participating peers selected uniformly
at random. The link distances shown are the average distance
from each participating peer to the nearest replica. Other
topologies with exponential expansion give similar results.

B. Minimization of Network Bandwidth Used
Our objective is to find the optimum value for ni, the

number of replicas of file i (for all i), which minimizes τ, the
average number of links traversed in satisfying file requests,
i.e.,

τ =
1

N i
i

λ
λ=∑ τi(ni) (3)

Thus, our optimization problem may be stated as:

1

1{ }
()

N
i i

N i
i iin

nMin
λτ τ
λ=

=

 =
∑ (4)

Subject to:

1

N
ii

n KM
=

≤∑ (5)

The constraint in (5) states that the total number of replicas of
all the files should not exceed the total storage available. Since
there is no benefit derived from having multiple replicas of a
file at a node, the number of replicas of any file can never be
more than the number of nodes. Further, there is at least one
replica of each file. These two conditions give 2N other
inequality constraints –

 ni ≤ M for all i = 1 to N (6)

 ni ≥ 1 for all i = 1 to N (7)

This is a straightforward optimization problem and we state
the solution as the following theorem:

Theorem 2:
 For a peer-to-peer network whose underlying link-level

topology is such that the number of links traversed in
downloading file i from its nearest source, is related to the
number of replicas of file i, ni, as τi(ni) = αlogd(M/ni) + C, and
the storage capacity at each node is equal, then the network
bandwidth used (measured as the average number of links
traversed in a download) is minimized when the number of
replicas, ni, of file i is piece-wise linear with respect to the file
request rate λi, (i = 1,2, …, N) i.e.

(i) The number of replicas of each file ni is proportional to the
file request rate λi i.e.

 ni ∝ λi (8)

if
KKM

i 11 ≤≤
λ
λ ∀i, and,

(ii) The number of replicas

 ni = Max(1,Min(
0γ
βλi , M)) (9)

where γ0 is s.t. 1

N
ii

n KM
=

=∑ , in the general case.

Proof:
The classical approach to solving constrained optimization

problems is the method of Lagrange multipliers. First we will
show the result for part (i). We will ignore the constraints
specified by (6) and (7) for now and instead show that our
optimal solution satisfies these constraints under conditions on
λi specified in part (i). The Lagrangian of our constrained

Figure 3. Optimal Replica Distribution: (i) under constraints on file request

rates in (8) (ii) in the general case.

optimization problem is:

H =
1

N i
i

λ
λ=∑ τI(NI) + γ (

1

N
ii

n KM
=

−∑)

Minimizing H over all ni for i = 1 to N:

0i i

i i

H
n n

λ τ γ
λ

∂∂ = + =
∂ ∂

 i = 1 to N (10)

Using τi(ni) = α logd(M/ni) + C = −β ln(ni) + c’,

i

i in n
τ β∂ = −

∂

Substituting this in (10), we obtain,

ni = iλ β
λ γ

Applying the constraint
1

N
ii

n KM
=

=∑ to remove the
unknown constant β/γ, we obtain the optimum number of
replicas as:

 ni = iλ
λ

KM i = 1 to N (11)

The constraints in (6) and (7) are satisfied if 1 1i

KM K
λ
λ

≤ ≤ ∀i.

This proves part (i) of the theorem.

Without this condition on λi, one can rewrite the problem as
a maximization problem using a modified Lagrangian. Using
τi(ni) = −β ln(ni) + c, and including both the constraints in (6)
and (7) and rewriting the ni ≥ 1 constraint as −ni ≤ −1, the
modified Lagrangian is:

G = β [
1

ln()N
i ii

nλ
=∑] − γ0 [1

N
ii

n KM
=

−∑]

 −
1

()N
i ii

n Mγ
=

−∑ −
1

N
ii

α
=∑ (−ni + 1)

The Kuhn Tucker Conditions for the modified Lagrangian are:

i

in
λ β − γi − γ0 +α i = 0 for i = 1 to N (12)

1

N
ii

n KM
=

≤∑ , γ0 ≥ 0, and γ0[1

N
ii

n KM
=

−∑] = 0 (13a)

ni ≤ M, γi ≥ 0, and γi (ni − M) = 0 for i = 1 to N (13b)

−ni ≤ −1, αi ≥ 0, and αi (−ni +1) = 0 for i = 1 to N (13c)

From (12): ni =
0

i

i i

λ β
γ γ α+ −

(13b) and (13c) imply that: either γi = 0 or ni = M, and also
either αi = 0 or ni = 1, respectively. Therefore, the optimum
solution is:

 ni = Max(1, Min(
0

iλ β
γ

, M))

where, from (13a), γ0 is such that
1

N
ii

n KM
=

=∑ when the
storage size is not large enough to store all the files (i.e. N ≥ K).
This proves part (ii) of the theorem.

 Q.E.D.

In the remaining discussion, we assume 1 1i

KM K
λ
λ

≤ ≤ ∀i

and use (11) as the optimal replica distribution. For sufficiently

large KM, 1i

KM
λ
λ

≥ should be satisfied. If 1i

K
λ
λ

≥ , the

optimal distribution is for the higher request rate files to be
located at all M nodes; but if a file is located at all nodes, we
can simply assume that they are not part of the peer-to-peer
system as no one ever lacks them and, hence, no download is
ever made for these files. Without these high request rate files

in the system, 1i

K
λ
λ

≤ should be satisfied.

C. Uniform Distribution of Replicas
The assumption of uniform distribution of file replicas in

the network allows us to say that the probability of finding file i
at a randomly selected node is ni/M when there are ni replicas
of the file in the network. In this section, we wish to verify that
in our model of a peer-to-peer system where nodes have fixed
storage (and, consequently, must use some cache management
algorithm), the replicas are indeed uniformly distributed at
“equilibrium” when all peers have the same file access pattern.
Let us clarify what we mean by “equilibrium”. Suppose that
each file is at one node (the “origin server” for that file)
initially. As nodes make requests and get these files, the
number of replicas for each file increases. However, since the
storage is limited, nodes will eventually have to delete some of
these replicas. Thus, the number of replicas changes from the
initial condition of one replica per file over time. We define the
system to be in equilibrium when the number of replicas of
each file does not change (on average, over some time
interval), i.e., the “drift” is zero.

A generic un-annotated network topology has no physical
location associations which makes discussing the distribution
of replicas in the system difficult. Therefore, we introduce a
coordinate system in our network. Relative to any one
particular node (the “origin”-node), one can think of the
location of the other nodes as their hop distance to the origin-
node. Thus, relative to the origin-node, the node location can
be specified using polar coordinates. A radially different
pattern is not possible if the file request patterns and the per-
node storage capacity are uniform across all nodes, and the
topological difference among the nodes is minimal. Therefore,
the ratio of the number of replicas of a file to the number of
nodes at each hop distance from the origin-node is an adequate
measure of file distribution. For example, if this ratio is the
same at each hop-distance, one can conclude that the file
replicas are uniformly distributed in the network. In contrast, if

Figure 4. Distribution of files at different hop distances from the Origin
Server for files with different request rates

this ratio were to decrease with increasing hop distance when
the origin server is chosen to be the origin-node, one would
conclude that the probability of finding the file is higher at
nodes closer to the origin server. For any simulation run, after
the topology instance is generated, the number of nodes located
at each hop distance from the origin-node is easily computed.
Statistics for the number of nodes that have a file can be
collected after the simulation has run for a sufficient length of
time (reached “equilibrium”).

Fig. 4 shows the file distribution, with a single origin
server, for three different files – one with a very high request
rate, another with a moderate request rate and the third with a
very low request rate. The simulation had 1000 peers with a
storage capacity to store 10 files each and there were a total of
100 unique files in the system. The file request rates were Zipf-
distributed with a zipf-exponent of 1.0 which has been found to
be adequate to capture the skew in request rates for peer-to-
peer systems [7] and web environments [2]. The underlying
link-level topology was the 10,254-node PLRG discussed
earlier. The participating peers were uniformly chosen from the
link-level topology nodes. The file replacement policy when
the space was needed for a newly requested file was LRU (i.e.
the Least Recently Used file is replaced).

For the simulation results shown in Fig. 4, the number of
replicas used to compute the fraction of nodes that have the file
at each hop distance is the average value over 1000 simulation
iterations after the steady-state replica distribution was reached.
The deviation from the overall fraction of nodes with the file, at
different hop distances, is a measure of how uneven the file
distribution is. As seen in the figure, relative to the overall
fraction of nodes with the file, the variation in the fraction of
nodes with the file at different hop distances is very small.
Therefore, we conclude that when all the participating peers
have the same file request rates, at equilibrium, the replicas of a
file are uniformly distributed over the network.

IV. CACHE REPLACEMENT ALGORITHMS FOR
PROPORTIONAL REPLICA DISTRIBUTION

Ideally, we wish our peer-to-peer system to be autonomic
and operate at optimal or near-optimal performance with no
external intervention (as opposed to measuring file request

Figure 5. Number of Replicas vs. Request Rate

rates periodically and then populating the network with a
proportional number of replicas by a centralized mechanism).
In Section 3.C, we discussed a peer-to-peer system where the
peers had finite storage space and if space was needed for a
newly requested file then a previously obtained file was deleted
using the LRU file replacement policy (except that the last
replica of a file is never deleted). We plot the steady-state
distribution of the number of replicas of each file against the
file request rate in Fig. 5 for the same simulation. As we can
see, the LRU cache replacement policy obtains near linear
proportionality except for high request rate files.

We also simulated other common cache management
algorithms such as FIFO (First-In, First-Out: replace the oldest
file), LFU (Least Frequently Used: replace the least frequently
used file) and Random-Delete (randomly select the file to be
replaced) and the results are shown in Fig. 5 alongside the
results for LRU. All these algorithms generate a replica
distribution similar to LRU: LFU is closer to the optimal
distribution than LRU while FIFO and Random-Delete are
slightly further from it than LRU.

While none of the known cache management algorithms
give us exactly the desired linear proportionality, an
equilibrium analysis of Random Delete (when space needs to
be made in the cache, one of the files is randomly selected for
deletion) provided us insights into possible ways for
constructing mechanisms to achieve the linear proportionality
in a decentralized manner.

Each file request when the file is not available in the local
cache results in that file being brought into the cache. Thus, the
replicas for file i are created at a rate λi(1−ni/M). With random
deletion, the file removal rate is proportional to the number of
replicas of the file in the system. At equilibrium, the replica
creation rate should equal the replica deletion rate. Thus, at the
equilibrium distribution, we have:

λi(1− ni/M) = Cni

where C is a proportionality constant. This explains why
Random Delete does not give linear proportionality.

A keen observer will note that a replica creation rate of λi
will achieve linear proportionality with Random Delete file
replacements. The deviation from a λi creation rate was due to

Figure 6. Optimal Cache Management Algorithms

replicas not being created when the file is available in the local
cache. Creating a replica when the requested file is available in
local cache can rectify this. Since the replica cannot be created
in the local cache, it must be created at a different peer. This
Create-Extra+Random-Delete algorithm was simulated and the
results are shown in Fig. 6. As expected, the populate-extra
algorithm does give us the linear proportionality in number of
replicas. Writing on other peers caches, however, defeats our
original objective as the extra download incurred on every
request that is locally satisfied is likely to negate any
performance benefit derived from the replica distribution being
closer to optimal. It would be better if we could adjust the file
deletion rate to be proportional to ni(1− ni/M). This can be
achieved if the file to be deleted is not selected with uniform
probability from the cache but is weighted according to
(1− ni/M). Since, each node does not know the total number of
replicas of a file in the network locally, we need to devise other
methods to achieve the (1− ni/M) biasing in the file selection
for deletion. We know that if the desired linear proportionality
was achieved, ni/M = Kλi/λ. Therefore, if the global file request
rates were known locally, we could devise an algorithm that
selects the file to be deleted with probability proportional to
Kλi/λ, we may get the desired linear proportionality. The
simulation results for this DeleteProb_RequestRatesKnown
algorithm are shown in Fig. 6. Unfortunately, in real systems, it
is difficult to obtain the global file request rates locally so this
algorithm does not seem very practical.

To evaluate the benefits (against the cost) of each of these
algorithms, we should know the average number of links
traversed per download for these algorithms. Using the τi(ni) =
α logd(M/ni) + C expression for the average number of links
traversed in downloading a file that has ni replicas, we can
compute the average number of links traversed per download
using (3) to be:

τ = α
1

N i
i

λ
λ=∑ logd(M/ni) + C’ = 1

ln
ln

N i
i

i

M
d n

λα
λ=

∑ + C’

To remove the effects of the underlying network topology,
we extract the replica-distribution-dependent term from τ and
define a new system performance metric, normalized network

TABLE I. NORMALIZED NETWORK BANDWIDTH USED VS. CACHE
REPLACEMENT ALGORITHM

Algorithm LRU LFU FIFO “Optimal”

τ' 1.1897 1.176 1.203 1.1746

bandwidth used:

 τ’ =
1

lnN i
i

i

M
n

λ
λ=

∑ (14)

We compute the normalized network bandwidth used from
the steady-state replica distribution achieved by the different
cache replacement algorithms in these simulations. The
numbers are listed in Table 1. Comparing the performance of
the different algorithms, we find that no significant advantage
is obtained by using LFU (especially taking into account the
added complexity of keeping frequency counters) instead of
LRU or FIFO and that even the optimal cache replacement
algorithm offers no significant advantage. Thus, LRU or FIFO
cache replacement is a strong candidate for use in our peer-to-
peer system and we study LRU’s performance in peer-to-peer
environment in more detail in the next section.

V. LRU CACHE REPLACEMENT IN PEER-TO-PEER
ENVIRONMENT

So far, our simulations used a zipf-distributed file request
rate with zipf-exponent of 1.0. To explore the effect of skew in
file request rates, we show the simulation results for the
number of replicas against the file request rate in Fig. 7 for two
other file request rate distributions: a more skewed file request
rate distribution (zipf-distribution with zipf-exponent 1.5), and
a less-skewed request rate distribution where the request rates
for different files are uniformly distributed between the lowest
and the highest file request rates.

These results suggest that for applications where the access
patterns do not have much skew, LRU will perform very well.
Notice that even when the skew in file request rates is so large
that the optimal replica distribution is now defined by (9)
instead of (8), LRU file replacement still achieves near optimal
replica distribution.

An analytical model of a network with LRU storage can be

Figure 7. LRU performance with varying levels of skew in the request rate

distribution

constructed as follows. Since the probability of finding a file is
the same across the network, it is sufficient to find the
probability of a file being in storage at any random node.
Further, one can construct the model from the perspective of a
particular file, say, file i – all requests for file i move the file to
the top-most position in the storage; a request for any other
files moves file i down to one lower position. We set up a
Markov Chain to represent the position of the file in the stack,
i.e. the system is in state k when the file is in the kth position
from the top of the LRU stack: state 1 implies that the file is at
the top-most position in the LRU stack; state N (N is the
storage capacity in number of files) means that the file is at the
bottom-most position in the LRU stack. An additional state,
state 0, is defined to represent the state when the file is not in
the storage. A satisfied request for the file always changes the
system state to 1 (as the file moves to top-most position in the
storage). A satisfied request for any other file changes the
system state to next higher state (as that other file now moves
to the top-most position pushing all other files one position
down). Satisfied requests for the file include the storage
owner’s requests for this file (since all file requests are
eventually satisfied, this contributes to transitions to state 1
from all the other states) and the requests for the file from the
other nodes that are satisfied (since nodes always share their
files, this contributes to transitions to state 1 from all states
other than state 0).

The model is shown in Fig. 8 where λi is the file request
rate for file i, λi' is the total request rate including file i’s
requests from other nodes satisfied by this node and µij,j+1 is the
rate at which file i is pushed down from position j to position
j+1 as requests for other files are served by the node. While λi
is given, the file requests from the other nodes (remote
requests) complicate the expressions for λi'. A node sends out a
file request only when it does not have the file. Thus, the rate at
which the other M-1 nodes send a file request for this file to the
peer-to-peer network is λipi0, where pi0 is the probability that
the file i is not available at a node. The nodes that have file i in
their cache satisfy these requests for file i sent to the peer-to-
peer network. Assuming that the requests are uniformly
distributed over the nodes that have the file, the request rate for
file i served by a node that has file i on account of requests
from other nodes equals (M−1)λi pi0 /M(1− pi0). Unfortunately
computing µij,j+1 is much harder for j>1. For j=1, the rate at
which file i is pushed down is the total rate at which requests
for all other files are served by this node (including both local
and remote requests). Thus, µi12 = k≠iλk(1+pk0) where pk0 is the
probability of not finding file k. However, for j>1, one must
adjust these rates for the possibility that the requested file may
be in a position <j in which case, an access to a file k≠i will not

Figure 8. Markov Chain model for the position of file i when per-node
storage capacity is K

affect position of file i in the LRU stack.

Reference [5] suggests one technique to circumvent this
complexity. The key idea is that at steady-state, the push-down
rate for file i from position j to j+1 must equal the rate at which
file i is brought into top j positions of the LRU stack (otherwise
the probability of finding the file in these top j positions
becomes unbounded). This conservation of flow principle
allows us to compute µij,j+1. File i is brought into the top j
positions under two conditions: (i) a local request for file i
when file i is not in any of the top j positions: the file may be
brought to the top position from positions j+1…K of the local
cache if it is available there or it may be brought from a remote
node (since we assume that a file that may be requested never
disappears from the system, all file requests are satisfied) (ii) a
remote request for file i: since the file i is not in any of the top j
positions, it must be in the remaining j+1…K positions in the
local cache for it to show up in one of the top j positions on a
remote request. The local requests contribute λi[1−P(i,1…j)] to
the push-down rate where P(i,1…j) is the probability that file i
is in one of the top j positions in the local cache. The remote
requests contribute an additional λi[(M−1)pi0/M(1−pi0)]
P(i,j+1…K|j) where P(i,j+1…K|j) is the probability that file i is
in positions j+1…K of the local cache given that it is not in any
of the top j positions in the local cache. Thus,

µij,j+1 = λi[1−P(i,1…j)] (15)
 + λi[(M−1) pi0 /M(1− pi0)]P(i,j+1…K|j)

Even after obtaining all the required rates for the Markov
Chain model, calculating individual probabilities is very
involved. [5] provides an approximate expression for pij, the
probability that file i is at position j in the LRU stack in terms
of the push-down rates at position j−1 as follows:

1,

1,1

ij j
ij N

kj jk

p
µ

µ
−

−=

≈
∑

 (16)

Other probabilities are defined in terms of pij as:

 1(,1...) j
ikkP i j p=≈ ∑ (17)

P(i,j+1…K|j)= (,1...) (,1...)
1 (,1...)

P i K P i j
P i j

−
−

 (18)

 pi0 = 1 − P(i,1…K) (19)

 Starting with P(i,1) = λi, we can iteratively solve (15)-(19)
until the value of pi0 converges. The complexity is O(KN) [5]
and, in our computations, the value of pi0 converged in only a
few iterations. In Fig. 9, we plot the number of replicas of each
file obtained from simulation and MP(i,1…K), the product of
the number of peers in the system and the probability of finding
file i in the local cache, obtained from (15)-(19) against the file
request rates for M = 5000, N = 500, K = 50 and zipf-
distributed {λi} with zipf-exponent 1.0. As shown in the figure,
the analytical model agrees very well with the simulation

Figure 9. Validation of Steady-state Analytical Model for LRU

results. System designers can use this model to estimate the
steady-state replica distribution for different system parameters
and the predicted values can be used to estimate the required
network bandwidth using (14) for a given cache size or for
selecting the appropriate size of the per-node user cache to
limit the required network bandwidth within a desired value.

VI. TRANSIENT PERFORMANCE OF THE LRU CACHE
REPLACEMENT POLICY

As we saw in earlier sections, at steady state, LRU and other
popular cache management algorithms can achieve near-
proportional replication even when the access rates are
extremely skewed. All our simulations in Fig. 4 had started
with only a single replica of each file (at their respective origin
servers) and, the equilibrium distribution was eventually
achieved in all the cases. Thus, we know that reasonable cache
replacement policies will also adapt the file replication
distribution if the user access patterns change. However, we
must examine the transient performance of the system to assure
ourselves that: either (a) the transient period is short, or (b) the
performance during the transient period is acceptable (i.e. the
peer-to-peer network does not crash for example). We
conducted a number of simulation runs to study the transient
performance with the different cache replacement algorithms.
The basic simulation setup here was identical to that in Section
4 except that at a certain pre-determined simulation iteration,
the request rate distribution was changed from zipf-distributed
with exponent 1 to an exponent of 0 where each file now had
the same request rates at all nodes. Fig. 10 shows the number of
replicas of each file1 with LRU cache replacement with
increasing simulation iterations starting from a few iterations
prior to the change. To get a sense of the scale of the x-axis, we
note that in each simulation iteration, on average, each node
makes one file request. In the zipf-exponent-1 request rate
distribution, the lowest file request rate is 0.0001
requests/node/iteration. Thus, on average, in 10 iterations, the
least popular file is requested only once.

From Fig. 10, we note that it takes about 12-13 iterations to
reach the new steady-state in the presented simulation scenario.
For zipf-exponent-0 request rate distribution, on average, there
are 10 requests for each file per iteration. The file with the
lowest request rate in the original distribution had 1 replica at

1 In Figs. 10, 11 and 13, each curve is for a different file (we show curves

for 12 files out of the 100 files in the simulation) and shows the number of
replicas of the file in the iteration indicated on the x-axis.

Figure 10. Transient behavior of LRU (the request rate distribution changed at

iteration label 5)

Figure 11. Transient behavior of LRU (the request rate distribution changed at

iteration label 5)

iteration labeled 5 and according to the zipf-exponent-0 request
rate distribution there should be about 100 replicas in the
system. Since new replicas are created only upon requests for
the file, it will take at least 10 iterations to create 100 replicas.
Thus, the 12-13 iterations LRU took to reach the new
equilibrium distribution is very reasonable.

In the aforementioned simulation, we also changed the
request rate distribution back to the original zipf-exponent-1
distribution 400 simulation iterations after the change to the
zipf-exponent-0 request rate distribution. In Fig. 11, we show
the number of replicas of each file with increasing simulation
iterations starting a few iterations prior to when the request
rates revert back to the original distribution.

Once again, we see that the number of replicas reaches the
neighborhood of the steady-state values in about 12-13
iterations after which we can say that the system performance
is close to the steady-state performance. We also note here that
the rate of convergence to the new steady-state distribution
appears to be independent to the individual request rates in both
Fig. 10 and 11.

Similar experiments were performed for FIFO, LFU and the
“optimal” cache replacement algorithm discussed in Section 4.
Instead of presenting the per-file details, as in Figs. 10, 11, we
condense the replica distribution information by computing the
normalized network bandwidth used, as defined in Section 4,
for the replica distribution at each iteration and show only that

Figure 12. Transient Performance of different cache replacement algorithms

in Fig. 12. At the 4200th iteration, the request rate distribution
was changed from zipf-exponent-1 to zipf-exponent-0 and at
the 4600th iteration it was changed back to zipf-exponent-0. As
shown in the figure, the duration of the transient period with
FIFO is the same as that with LRU while the optimal cache
replacement algorithm constructed in Section 4 has a slightly
longer transient period and a slightly worse performance during
the transient period (even though the simulations assumed that
the new file request rate distribution is relayed to the algorithm
at all nodes instantaneously).

As we can see LFU adapts to the change in request rate very
poorly (it has better transient performance than other
algorithms upon reverting back to the original request rate
distribution only because it had never achieved the steady-state
distribution for the equal request rate distribution and when the
request rate distribution reverted back to zipf-exponent-1
distribution, the replica distribution was close to the steady-
state distribution of LFU for the zipf-exponent-1 distribution).
This happened because our simulations used an infinite length
window over which the frequency is counted (with an upper
bound on the maximum counter value) and so it takes a long
time for the algorithm to register the change in access patterns
(effectively, the replica distribution never changed). A shorter
window should perform better than shown (but not necessarily

better than LRU) but maintaining a sliding window is a
complex task.

These results suggest that LRU or FIFO may be an adequate
choice for cache replacement in peer-to-peer systems. To better
understand the transient behavior of LRU, we now attempt to
develop an analytical model for the transient behavior of LRU
cache replacement.

Following the approach in [3], which analyzed the transient
performance of LRU for a database application, we first derive
the expressions for LRU performance in the cache warm-up
period (i.e. starting with an empty cache to reaching the steady-
state replica distribution). As we saw in the previous section,
the number of replicas of each file at steady state can be
computed as MP(i,1…K) where M is the number of peers in the
network and P(i,1…K) is the probability of finding file i in the
cache. We wish to compute the time-dependent probability of
finding file i in the cache after T accesses, Pt(i,T), starting with
an empty cache. Note that once there are enough accesses that
LRU replacement policy kicks in, the desired probabilities are
defined by (15)-(19) as derived in Section 5. In this section, we
are only interested in computing the probabilities while the
cache is not full.

We can compute Pt(i,T) if we know the probability that file i
is not in the cache after T accesses, pt

i0(T), using (19). After T
accesses, file i is not in the cache only if none of the previous T
accesses were for file i. Therefore,

pt
i0(T) = 1

T
iλ

λ
 −

 (20)

where λi is the request rate for file i. Note that if the file is not
in the cache, the additional term for requests for file i from
other nodes satisfied by this node that complicated (15) is not
required in the warm-up transient analysis.

Given pt
i0(T), the probability of finding file i in the cache

after T accesses is:

 Pt(i,T) = 1− 1
T

iλ
λ

 −
 (21)

These expressions apply only if the cache is not full yet i.e.

1
(,)N t

i
P i T K

=
≤∑ (22)

One can iteratively compute (21), (22) for increasing values
of T beginning with T=1 until (22) is violated. The smallest
value of T at which (22) is violated is the transient period,
Ttransient. The values of Pt(i,T) computed at each iteration can be
used to compute the number of replicas of each file in the
transient period which can, then, be used to estimate the system
performance as defined in Section 4 for the transient period.

We compare the replica distribution during the starting
period of our simulation with LRU cache replacement to the
output of our analytical model for the same system parameters
(M = 1000, N = 100, K = 10 and zipf-distributed {λi} with zipf-
exponent 1.0) in Fig. 13. As we can see in Fig. 13, the transient
performance predicted by the analysis matches very well with

Figure 13. Validation of Analytical Warm-up Transient Model

the simulation results for the cache warm-up period. The
analytical model shows (22) being violated at the 13th iteration
which is the duration of the warm-up transient period in the
simulation as well. MPt(i,T) also appears to match well with the
number of replicas of each file in the warm-up transient
duration. Beyond the warm-up transient period, we plot the
replica distribution based on the steady-state probabilities as
given in Section 5.

We also note that the values of Pt(i, Ttransient) obtained via
this iterative process (shown in Fig. 13) are close to the steady-
state probabilities P(i,1…K) that we computed in the previous
section using (15)-(19) (the differences arise as we ignored the
additional term for requests for file i from other nodes satisfied
by this node). Thus, this warm-up transient model gives us
another method of estimating the steady-state system
performance.

Another key observation is that the warm-up transient period
of 13 iterations is the same as the transient period in our
simulations shown in Fig. 10, 11. Thus, the general transient
period is related to the warm-up transient period. We know that
if the request pattern changed such that none of the older files
were to be requested and a new set of files becomes the active
set, our arguments in development of (21), (22) will apply
exactly the same. In the general case where the file request rate
changes are not as drastic, the same calculations for Pt(i,T) as
in (21) may not apply although the duration of the transient
period is likely to be shorter or the same as that defined by
(21), (22) for which the cache is completely populated
according to the new access pattern.

Finally, we add that (22) directly demonstrates the role of
cache size in determining the duration of the transient period. If
we increase the cache size K to 20 files in our earlier system,
our computations show that the duration of the warm-up
transient period increases to 35 iterations (compared to 13
iterations for K=10). Intuitively, one can see this since a larger
cache means more entries must clear out before the distribution
is defined by the new access pattern. When the request rate
changes are not as drastic, however, we do expect the transient
period to be shorter.

Also, recall from Section 4 that the system performance is
not very sensitive to the replica distribution when the replica
distribution is close to the optimal distribution. So, for small
changes, the system performance should remain reasonable
even through the transient period.

VII. RELATED WORK
Aside from dealing with specific issues like free-riding,

short node lifetimes etc. associated with music/video file
sharing over the Internet, the most popular application of peer-
to-peer networking, a substantial part of research into peer-to-
peer systems has gone into designing effective mechanisms for
searching which peer has the desired file which is a difficult
task if one attempts to build an ideal peer-to-peer system where
all participants are equal and there are no central servers. Some
of our analytical work on search performance in unstructured
peer-to-peer networks [16, 17] is relevant to our work here
since the average distance to the nearest replica is also the
number of hops needed to find a source for the desired file in
flooding-based searches. In particular, our derivation of the
average distance to the nearest replica over the link-level
topology in Section 3 has the same steps as the derivation of
the average distance to the nearest replica over the Erdos-Renyi
random graph overlay network in [17]. Download performance
in peer-to-peer networks has also been addressed by [1, 11, 18]
among others. [11] discusses the gains in reducing the
download time by splitting a large file into small pieces so as to
increase the service capacity of a large file rapidly after its
initial introduction into the peer-to-peer network. [1] provides
an analytical model for selecting peers so as to minimize the
download time while [18], like our current work, focuses on
file replication in seeking the same goal. File replication is also
discussed by [4, 8, 12] among others. These works are similar
to our work in that one of their objectives in replication is
improving the download performance. However, [8, 12] study
system architecture issues. [4] presents an analytical model for
a decentralized caching system but since it is in the context of
web caching, the assumptions are different (e.g. unlike our
model, cached content has limited lifetime in their scenario).
Web caching is addressed by many others (e.g. [14, 20]) and,
even though we study a network of caches, some of this work
is relevant to ours as our assumptions of uniformity imply that
the system performance can be inferred from the behavior of a
single cache and, hence, we find similarities in the analyses
[14] and conclusions [20]. A content distribution network also
replicates content at multiple sites (to decrease access latency
seen by end-users) and optimal allocation of system storage is
an issue in these networks also (e.g. [9]). While such works
may incorporate caching/replacement in their investigation, the

overall model is of centralized control over the multiple sites
and issues such as replica placement have been the main focus
of the research in this area. Peer-to-peer networking is also
being proposed now to support web accesses in cooperative
mobile environments and [10] presents an analytical model for
the performance of such a system. Our analytical model in
Section 5 is very similar to theirs as we both extend the
analytical model for a stand-alone LRU cache given in [5].
Finally, [13], also discusses the “natural” scaling achieved by
the fact that user requests create additional replicas which
improves system performance although they focused on the
system’s ability to find the newly created sources. The
“scaling” effect observed in [13] regarding the search problem
in peer-to-peer networks is, in fact, on account of the optimality
of proportional replication for search in unstructured peer-to-
peer networks which we had shown in [16] for the case of
uniform distribution of files as assumed in this paper. For the
search problem in unstructured peer-to-peer networks, we have
shown the optimality of proportional replication even for the
case of clustered demands in [19].

VIII. CONCLUSION
In this paper, we showed that the average network

bandwidth used per download is minimized when the number
of replicas of a file in the network is proportional to the request
rate for the file i.e. ni ∝ λi ∀i, where ni is the number of replicas
of file i, and λi is the request rate for file i. This result on
network-wide benefits of this proportional replication which
complements our earlier results on the per-node advantages of
this replica distribution motivated our inquiry into the ability of
cache replacement algorithms to automatically achieve the
proportional replication. We found that cache replacement
algorithms such as LRU are able to achieve near-proportional
distribution. Our simulation results indicate that the average
network bandwidth used per download with the replica
distribution achieved by LRU is very close to the performance
achieved with the optimal replica distribution in the cases we
simulated. An analytical model was developed for computing
the steady-state replica distribution with LRU in the general
case. Since the user access patterns may change over time, we
also investigated the transient performance of some of the
cache replacement algorithms. The time taken by LRU to
converge to the new steady-state replica distribution after a
change in the user access pattern was found to be very close to
the minimum required by any cache replacement algorithm.
We also developed an analytical model for the transient
behavior of LRU. In conclusion, LRU cache replacement
algorithm is a very attractive mechanism for obtaining the
network-wide benefits offered by proportional replication in
peer-to-peer networks.

REFERENCES
[1] M. Adler, R. Kumar, K. Ross, D. Rubenstein, T.Suel and D. Yao,

“Optimal Peer Selection for P2P Downloading and Streaming,” In Proc.
of IEEE INFOCOM 2005.

[2] L. Breslau, P. Cao, G. Phillips, and S. Shenker, “Web caching and Zipf-
like distributions: Evidence and implications,” In Proc. of IEEE
INFOCOM 1999.

[3] A. Bhide, A. Dan, D. M. Dias, “A Simple Analysis of the LRU Buffer
Policy and Its Relationship to Buffer Warm-Up Transient,” In Proc. of
ICDE 1993.

[4] F. Clévenot and P. Nain, “A Simple Model for the Analysis of the
Squirrel Peer-to-peer Caching System,” In Proc. of IEEE INFOCOM
2004.

[5] A. Dan and D. Towsley, “An Approximate Analysis of the LRU and
FIFO Buffer Replacement Schemes,” In Proc. of ACM SIGMETRICS
1990.

[6] C. Faloutsos, M. Faloutsos, P. Faloutsos, “On power-law relationships of
the internet topology,” In Proc. of ACM SIGCOMM 1999.

[7] K. P. Gummadi, et al., “Measurement, Modeling, and Analysis of a
Peer-to-Peer File-Sharing Workload,” In Proc. of ACM SOSP 2003.

[8] J. Kubiatowicz et. al., “OceanStore: An Architecture for Global-scale
Persistent Storage,” In Proc. of ASPLOS 2000.

[9] N. Laoutaris, V. Zissimopoulos, I. Stavrakakis, “On the Optimization of
Storage Capacity Allocation for Content Distribution,” Computer
Networks, Vol. 47, No. 3, pp. 409-428, February 2005.

[10] C. Lindemann and O. P. Waldhorst, “Modeling Epidemic Information
Dissemination on Mobile Devices with Finite Buffers,” In Proc. of ACM
SIGMETRICS 2005.

[11] L. Massoulie, M. Vojnovic, “Coupon Replication Systems,” In Proc. of
ACM SIGMETRICS 2005.

[12] A. Rowstron and P. Druschel, “Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility”, In Proc. of
SOSP 2001.

[13] D. Rubenstein and S. Sahu, “Can Unstructured P2P Protocols Survive
Flash Crowds?,” IEEE/ACM Trans. on Networking, Vol. 13, No. 3, pp.
501-512, April 2005.

[14] D. Starobinski and D. Tse, ”Probabilistic Methods for Web Caching,”
Performance Evaluation, Vol 46, Nos. 2-3, October 2001.

[15] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W.
Willinger, “Network topology generators: Degree-based vs structural,”
In Proc. of ACM SIGCOMM 2002.

[16] S. Tewari, and L. Kleinrock, “Analysis of Search and Replication in
Unstructured Peer-to-Peer Networks,” In Proc. of ACM SIGMETRICS
2005.

[17] S. Tewari, and L. Kleinrock, “Search and Replication in Unstructured
Peer-to-Peer Networks,” UCLA Computer Science Dept Technical
Report UCLA-CSD-TR050006, March 2005.

[18] S. Tewari, and L. Kleinrock, “On Fairness, Optimal Download
Performance and Proportional Replication in Peer-to-Peer Networks,” In
Proc. of IFIP Networking 2005.

[19] S. Tewari, and L. Kleinrock, “Optimal Search Performance in
Unstructured Peer-to-Peer Networks With Clustered Demands,” to
appear in Proc. of ICC 2006.

[20] L. Rizzo and L.Vicisano, “Replacement policies for a proxy cache,”
UCL-CS Research Note RN/98/13.

